Viral Vector Manufacturing Market Forecast to Reach $1.47 Billion by 2025 - ResearchAndMarkets.com

The "Viral Vector Manufacturing Market - Forecasts from 2020 to 2025" report has been added to ResearchAndMarkets.com's offering.

The global viral vector manufacturing market is projected to grow at a CAGR of 22.09% to reach a market size of US$1,469.144 million in 2025 from US$443.592 million in 2019.

The viral vector market is primarily being driven by the growing adoption of adenoviral vectors, lentiviral vectors, as well as retroviral vectors. The growing adoption stems from the need for effectively transferring therapeutic gene into the target cells that are an integral part of the process that involves the insertion of a functional copy of a gene into a defective cell one of the preferred treatment options for most chronic diseases, which is known as Gene therapy.

Furthermore, the growing number of clinical trials, the increasing number of gene therapy, and the expanding cognizance of effective mode of disease treatment are further expected to drive the growth of the viral vector manufacturing market during the forecast period. Since vector designing, production, packaging, and release testing is subject to limited availability and faced with challenges due to the complex nature of technologies and platform and thus many players in this space often endeavor in striking strategic collaboration and acquisitions that cover many aspects like the delivery of clinical grade product under its ambit, to facilitate the successful collaboration development of viral agent-based products.

Moreover, the efficient ability to express the therapeutic genes and non-pathogenic nature is another factor that is responsible for driving the growth of this market. The other key factors that are expected to drive the growth of the market are the increasing investment in the biopharmaceutical production coupled with the growing aging population, healthcare expenditure, technological advancement, especially in the genetic engineering segment.

Moreover, the increasing accessibility of healthcare facilities, the growing demand for treatment of disease due to the increasing global burden of diseases are a few of the other factors that are poised to drive the growth of this market during the forecast period. Nevertheless, despite the transitioning of this niche industry to high manufacturing is one such factor that may restrain the growth of the market to a certain extent.

Therefore, with such growing recognition of the importance of viral vectors, various developments are taking place in the viral vector manufacturing market. For instance, in June 2020, it was announced by Emergent BioSolutions Inc. (NYSE: EBS) which is a global life sciences company that it is going to invest $75 Million in Canton Site and expand viral vector and gene therapy capability facilitating the reinforcement of its contract development and manufacturing (CDMO) capabilities.

Again, in June 2020, Oxford Biomedica (LSE: OXB) which is a major gene and cell therapy group, announced that it has signed an agreement of collaboration with the Vaccines Manufacturing and Innovation Centre (VMIC), a not-for-profit organization that has been established to provide the first strategic vaccine development and progressive manufacturing capability in the UK. Under this 5-year agreement, the organization will work towards enabling the manufacture of vaccines that are based on viral vector, to contribute towards a swift growth in the domestic capacity for this specialized field of vaccine manufacturing.

In April 2020, Merck KGaA (FWB: MRK) a leading science and technology company announced that a 100 million facility, second in Carlsbad, California USA that is intended to boost its BioReliance viral and gene therapy service offering to help their customers to aid their customers to commercialize the gene therapies that are brought about by viral vectors concomitantly helping innovators scale up their production that is in tandem with the quantum that allows them to reach out to more patients.

Earlier, in January 2020, the launch of ZYNTEGLO (autologous CD34+ cells encoding A-T87Q-globin gene) in Germany was announced by bluebird bio, Inc. (Nasdaq: BLUE). ZYNTEGLO is a one-time gene therapy that has been specifically developed for patients aged 12 years and older with transfusion-dependent -thalassemia (TDT) who do not possess 0/0 genotype.

In December 2019, it was announced that a leading supplier of services and technologies for the life sciences industry called Novasep launched oXYgene which is a fully integrated offering for the construction of facilities dedicated towards customers to aid them in their viral vector production.

In October 2019, it was reported that GE Healthcare Life Sciences which has now rebranded itself as Cytiva, was about to launch the KUBio box which is an adaptable, flexible and fully integrated environment for biomanufacturing to accelerate the production gene therapies based on of viral vector. These latest additions were intended to bring gene therapies swiftly to the market thereby contributing to the increased capacity in the viral vector area.

In March 2018, it was reported that Sartorius Stedim Biotech SA (SSB), which is a major international technology partner supplier of products and services biopharmaceutical industry has been selected by ABL Europe as its chief supplier of single-use systems whereby the new viral vector manufacturing capacity has been started in Strasbourg at its European facility. ABL Europe, a subsidiary of ABL Inc. provides dedicated viral vector GMP manufacturing services for oncolytic, vaccine and gene therapy projects in all stages of clinical development through to commercial launch.

Key Topics Covered

1. Introduction

1.1. Market Definition

1.2. Market Segmentation

2. Research Methodology

2.1. Research Data

2.2. Assumptions

3. Executive Summary

3.1. Research Highlights

4. Market Dynamics

4.1. Market Drivers

4.2. Market Restraints

4.3. Porters Five Forces Analysis

4.4. Industry Value Chain Analysis

5. Viral Vector Manufacturing Market Analysis, By Type

5.1. Introduction

5.2. Retroviral vectors

5.3. Lentiviral Vectors

5.4. Adenoviral Vectors

5.5. Others

6. Viral Vector Manufacturing Market Analysis, By Application

6.1. Introduction

6.2. Vaccinology

6.3. Gene Therapy

7. Viral Vector Manufacturing Market Analysis, By End-User

7.1. Introduction

7.2. Pharmaceutical & Biotechnology Companies

7.3. Research Institutes

7.4. Contract Research Organizations

8. Viral Vector Manufacturing Market Analysis, by Geography

8.1. Introduction

8.2. North America

8.3. South America

8.4. Europe

8.5. The Middle East & Africa

8.6. Asia-Pacific

9. Competitive Environment and Analysis

9.1. Major Players and Strategy Analysis

9.2. Emerging Players and Market Lucrativeness

9.3. Mergers, Acquisitions, Agreements, and Collaborations

9.4. Vendor Competitiveness Matrix

10. Company Profiles

10.1. Sirion-Biotech GmbH

10.2. Vigene Biosciences

10.3. Batavia Biosciences B.V.

10.4. Virovek

10.5. Lonza

10.6. Vector Biolabs

10.7. Cobra Biologics

10.8. MaxCyte, Inc.

10.9. Genelux

10.10. BioNTech SE

For more information about this report visit https://www.researchandmarkets.com/r/c3nfai

Contacts:

ResearchAndMarkets.com
Laura Wood, Senior Press Manager
press@researchandmarkets.com

Data & News supplied by www.cloudquote.io
Stock quotes supplied by Barchart
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.